Syndicate content

Energy

The 2017 Atlas of Sustainable Development Goals: a new visual guide to data and development

World Bank Data Team's picture

The World Bank is pleased to release the 2017 Atlas of Sustainable Development Goals. With over 150 maps and data visualizations, the new publication charts the progress societies are making towards the 17 SDGs.

The Atlas is part of the World Development Indicators (WDI) family of products that offer high-quality, cross-country comparable statistics about development and people’s lives around the globe. You can:

The 17 Sustainable Development Goals and their associated 169 targets are ambitious. They will be challenging to implement, and challenging to measure. The Atlas offers the perspective of experts in the World Bank on each of the SDGs.

Trends, comparisons + country-level analysis for 17 SDGs

For example, the interactive treemap below illustrates how the number and distribution of people living in extreme poverty has changed between 1990 and 2013. The reduction in the number of poor in East Asia and Pacific is dramatic, and despite the decline in the Sub-Saharan Africa’s extreme poverty rate to 41 percent in 2013, the region’s population growth means that 389 million people lived on less than $1.90/day in 2013 - 113 million more than in 1990

Note: the light shaded areas in the treemap above represent the largest number of people living in extreme poverty in that country, in a single year, over the period 1990-2013.

Newly published data, methods and approaches for measuring development

Are hybrid and electric buses viable just yet?

Alejandro Hoyos Guerrero's picture
Photo: Volvo Buses/Buses Fan
Hybrid and electric buses may be the future of public transport. But today, they are costlier than their diesel equivalents. Therefore, their implementation requires that private operators be subsidized, or that the higher costs for public operators be covered. For now there are more efficient alternatives for reducing GHG and local emissions.

The most significant emissions reduction will not come from the vehicles; it will come from people leaving their cars at home.

Let’s take the example of a Mexican commuter who chooses whether to ride a bus or drive to work each morning. If she drives, her commute will generate 8kg of CO2, vs. only 1.5kg when riding a diesel bus. By making the greener choice, she is saving up to 6.5kg of CO2. With a hybrid bus, that same ride would emit 1kg of CO2, and zero emission with an electric (assuming zero-emission grid)—translating into additional savings of 0.5kg and 1.5kg over a diesel bus, respectively. The extra savings are welcome, of course, but they pale in comparison to the emissions reduction generated by shifting from a private car to a public bus.

If we analyze a whole system instead of an individual, technology’s potential to reduce emissions gains importance, but is still lower than that of modal shift. That means we first need to focus on providing incentives for drivers to leave their cars behind and turn to public transit. When a bus system with exclusive lanes opens, for instance, 1%-5% of passengers are likely to be new riders who used to drive and made a conscious decision to switch. This proportion can increase to 10-15% with the right ancillary interventions, such as providing non-motorized transport infrastructure, improving accessibility and service quality.

Another great source of emission savings is a more efficient system. We have seen reductions of up to 30% in vehicle-kms after a system reorganization. The following graph compares the potential emission reductions of modal shift and fleet rationalization by shifting vehicles to hybrid (left column) or electric (right column) technology.

Chart: Over 1 Billion People Had No Access to Electricity in 2014

Tariq Khokhar's picture

Nearly 1.1 billion people or 15 percent of the world’s population had no access to electricity in 2014. Nearly half were in rural areas of Sub-Saharan Africa, and nearly a third were rural dwellers in South Asia. In all, 86 percent of people without electricity lived in rural areas, where providing infrastructure is more challenging. Read more in the Global Tracking Framework and their 2017 report on progress towards sustainable energy. 

In Brazil, electricity meters transform lives and enlighten businesses

Christophe de Gouvello's picture

Buyers agreed to destroy obsolete equipment to prevent its reuse in the power distribution network

What do electricity meters and mobile phones have in common? Answer: both are present in millions of Brazilian homes and both become electronic waste as soon as they are discarded. Though they do not contain heavy metals, their materials pose risks from the moment they are discarded in waste dumps or landfills.
 

The potential gain from regional electricity trade in South Asia

Michael Toman's picture

Countries in the South Asia Region (SAR) face a number of operational and economic challenges as they seek to keep up with rapidly growing electricity demands. Our analysis finds that increased regional electricity trade facilitated by expanded cross-border transmission interconnections among SAR countries can contribute significantly to alleviating these challenges.  Cross-border electricity trade could save as much as US$94 billion (in present value terms) in the region during the 2015-2040 period. It would reduce the regional power sector CO2 emissions during the period by 8% even without pro-active measures to reduce CO2 or harmful local pollutants. Moreover, significantly increasing cross-border interconnection and trade will necessitate taking steps that inevitably will reduce substantial existing inefficiencies in national power systems in the region, as well.

Need solar resource data or maps? We've got an app for that

Oliver Knight's picture


Last month the World Bank launched a new Global Solar Atlas: a free, online tool that lets you zoom into areas anywhere in the world in great detail (1km resolution), and with downloadable poster maps for all developing countries. This new interactive tool is welcome news for anyone – policymaker or commercial developer – who has ever looked for solar maps or resource data from the cluttered and sometimes confusing array of public resources available
 
For this new atlas to have a greater impact, the following needs to happen.   
 
First, we need to cut down on the duplication and often wasted resources associated with national mapping projects. For example, before the Global Solar Atlas was launched, it cost $100,000-150,000 to commission a solar resource map for an average-sized country, and the work took around six months to complete. But with the Atlas,  we have completed this task for  all developing countries at a fraction of the cost, allowing funding to be channeled into higher value activities such as geospatial planning to identify renewable energy zones, or ground-based measurement campaigns to help further improve the solar resource models on which the results are based. This new tool could be an invaluable asset for governments, development agencies, and foundations so that they no longer commission country-based mapping efforts that are, in many cases, costly and may end up duplicating what the Atlas offers already.
 
Second, we need to continuously improve the data behind the Atlas, and other commercially available solar resource models, by investing in ground-based solar radiation measurement stations, with the first two years of data compiled and available in the public domain. But this is easier said than done. There are major gaps in the current measurement data network, especially in developing countries, and this adds to the uncertainty of the solar data provided. In turn, that increases developer risk and ultimately costs. Unfortunately, it is very easy to commission a poor quality measurement campaign, or to leave out key bits of data that are needed for eventual analysis. So adopting a universal set of standards is vital.
 
Third, public research institutes that have previously carried out solar resource assessments need to take a hard look at what value they add in this area. Over the last five years a number of commercial providers of solar resource data have emerged that maintain standing solar resource models, and work continuously to improve and update their solar data. This is an excellent example of public incubation and research being translated into successful start-ups, and should be celebrated. But the originators now need to move on to new frontiers of research to avoid crowding out commercial providers, and to help generate the next generation of methodologies and tools.

Energy storage can open doors to clean energy solutions in emerging markets

Alzbeta Klein's picture

Also available in: French

Energy storage is a crucial tool for enabling the effective integration of renewable energy and unlocking the benefits of the local generation of clean resilient energy supply. Photo credits: IFC


For over a hundred years, electrical grids have been built with the assumption that electricity has to be generated, transmitted, distributed, and used in real time because energy storage was not economically feasible.
This is now beginning to change.

The story behind RISE numbers

Yao Zhao's picture

You’d think the most important thing about putting together a global scorecard is, well, the scores of course.

My experience working on RISE – Regulatory Indicators for Sustainable Energy – taught me that it takes a lot more than just data to deliver a one-of-a-kind report.

But hang on. What’s RISE, you ask? RISE is a groundbreaking tool that helps assess government support for sustainable energy investments, which are critical to achieve sustainable energy goals by 2030.

Nothing to this scale has been done before. RISE covers 111 countries, which account for over 90 percent of global population and energy consumption.

My very first time getting familiar with this data was when I worked on the pilot version of RISE . We had decided the best way to get people to understand this endeavor was to get them to play a “Who Wants to be a Millionaire” style game, but with energy access, renewable energy and energy efficiency data. What an eye opener. At that time, I thought the breadth of the pilot project -- 28 indicators, 85 sub-indicators and a 17-country coverage – was impressive.

A hybrid model to evaluate energy efficiency for climate change mitigation

Govinda Timilsina's picture
In response to global calls for climate change mitigation, many countries, especially in the developing world, have considered pursuing policies that can help reduce greenhouse gas (GHG) emissions and also ensure additional economic benefits. Accelerating the adoption of energy efficient technologies is one of the main options as it may help reduce consumers’ spending on energy besides reducing GHG emissions.

Traffic jams, pollution, road crashes: Can technology end the woes of urban transport?

Shomik Mehndiratta's picture
Photo: Noeltock/Flickr
Will technology be the savior of urban mobility?
 
Urbanization and rising incomes have been driving rapid motorization across Asia, Africa, and Latin America. While cities are currently home to 50% of the global population, that proportion is expected to increase to 70% by 2050. At the same time, business-as-usual trends suggest we could see an additional 1 billon cars by 2050, most of which will have to squeeze into the already crowded streets of Indian, Chinese, and African cities.
 
If no action is taken, these cars threaten literally to choke tomorrow’s cities, bringing with them a host of negative consequences that would seriously undermine the overall benefits of urbanization: lowered productivity from constant congestion; local pollution and rising carbon emissions; road traffic deaths and injuries; rising inequity and social division.
 
However, after a century of relatively small incremental progress, disruptive changes in the world of automotive technology could have fundamental implications for sustainability.
 
What are these megatrends, and how can they reshape the future of urban mobility?

Pages